Skip to content

Agenterprise - Model-Driven AI Agent Development

Define your AI architecture once. Deploy with any tech stack. Scale without vendor lock-in.

Why Agenterprise?

Building enterprise AI agents is complex. You juggle: - Multiple AI agents that need to communicate (a2a) - Choosing between FastAPI, PydanticAI, Pydantic, Redis... - Rapid iteration between architecture and implementation - Avoiding tech stack lock-in

Agenterprise solves this with Model-Driven Development:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  1. Write your AI architecture in Agenterprise DSL       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  βœ… Define agents, tools, data, infrastructure           β”‚
β”‚  βœ… Technology-agnostic, version-independent             β”‚
β”‚  βœ… Built-in Agent-to-Agent (a2a) support                β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  2. Generator creates production-ready project            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  βœ… FastAPI service layer with a2a routing               β”‚
β”‚  βœ… PydanticAI agents with built-in a2a support          β”‚
β”‚  βœ… Pydantic data validation & schemas                   β”‚
β”‚  βœ… Redis Streams for agent coordination                 β”‚
β”‚  βœ… Docker & deployment artifacts                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  3. Extend & Deploy                                       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  βœ… Add custom code in ext/ (never overwritten)          β”‚
β”‚  βœ… Fork stacks for technical customization              β”‚
β”‚  βœ… Regenerate anytime without losing your code          β”‚
β”‚  βœ… Deploy to Docker, Kubernetes, or serverless          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Differentiators

πŸ€– Built-in Agent-to-Agent (a2a) Communication

Multi-agent systems require seamless coordination. Agenterprise has a2a communication baked into its AI and Service layersβ€”no add-ons needed.

πŸ”„ Tech Stack Flexibility

  • Write your DSL once
  • Swap FastAPI ↔ other frameworks
  • Change PydanticAI ↔ LangChain
  • Add middleware (Redis, RabbitMQ, etc.)
  • Same architecture, different implementation

πŸ“¦ From PoC to Enterprise

  • Quick PoC: Generate minimal stack with FastAPI + PydanticAI
  • Scale Up: Add Redis middleware for multi-agent coordination
  • Enterprise Ready: Customize templates, extend in designated code zones

πŸ—οΈ Model-Driven Architecture

  • Decouples what (architecture) from how (technology)
  • Version your architecture independently of frameworks
  • Migrate tech stacks without rewriting your AI logic

Quick Start: 3 Steps

1️⃣ Write Your DSL

Define your AI environment in Agenterprise's simple, human-readable language:

ai_environment "MyAgentApp" {
    architecture {
        envid = "unique-project-id"
        service-techlayer = aiurn:techlayer:github:www.github.com:agenterprise:service-layer-fastapi-base
        ai-techlayer = aiurn:techlayer:github:www.github.com:agenterprise:ai-layer-pydanticai
        data-techlayer = aiurn:techlayer:github:www.github.com:agenterprise:data-layer-pydantic
        agentic-middleware-techlayer = aiurn:techlayer:github:www.github.com:agenterprise:agentic-middleware-layer-redistream
    }
}

See the full DSL documentation for more.

2️⃣ Generate Your Project

agenterprise --code-generation --dsl mydsl.dsl --target ./my-agent-app

Get a production-ready project with: - Complete FastAPI service - Agent definitions with PydanticAI - Data models with Pydantic - Docker & deployment configuration (Dockerfile, docker-compose, deployment scripts) - README and docs - Ready to deploy to Kubernetes, Docker, or serverless platforms

3️⃣ Extend & Deploy

  • Add custom logic in designated ext/ folders
  • Regenerate anytime without losing your code
  • Deploy to Docker, Kubernetes, or serverless

Two Paths to Extensibility

Agenterprise is designed to be extended endlessly:

1️⃣ Technical Extensibility: Extend Tech Stacks

Fork and customize any stack for your needs:

Official Stack (fastapi-base)
         ↓
   Your Fork (my-fastapi-enhanced)
         ↓
   Use in DSL: aiurn:techlayer:local:..:templates:my-fastapi-enhanced
  • Clone any stack from GitHub
  • Modify for your specific requirements
  • Reference locally or share with the community
  • Create entire new layers (e.g., custom LLM integration, alternative databases)

Result: Unlimited tech stack combinations tailored to your needs.

2️⃣ Functional Extensibility: Extend Generated Projects

Every generated application has designated extension points:

Generated Code (safe to regenerate)
         ↓
    ext/ folder (your custom code - never overwritten)
         ↓
    Your Business Logic & Custom Features
  • Write custom agents, tools, and services in ext/
  • Regenerate the base project anytimeβ€”your code stays intact
  • Add business logic without touching generated files
  • Iterate your architecture, keep your implementation

Result: Seamless iteration between architecture (DSL) and implementation (custom code).


Available Tech Stacks

Choose from curated, actively maintained stacks (Alpha stage). This is just the beginningβ€”the ecosystem will grow with community contributions:

Stack Purpose Highlights
service-layer-fastapi-base REST API layer Async, Auto OpenAPI docs, a2a routing
ai-layer-pydanticai Agent orchestration Type-safe, built-in a2a support, Multi-LLM
data-layer-pydantic Data validation JSON schema, Custom validators
agentic-middleware-layer-redistream Agent communication Real-time streaming, Message persistence, a2a

πŸ‘‰ Explore all available stacks β†’

More coming: Fork any stack or contribute your own to expand the ecosystem!


Learn More


About Agenterprise

Agenterprise is an open-source project built for developers who need: - Rapid experimentation with AI architectures - Tech-stack independence - Multi-agent coordination built-in - Enterprise-grade foundation

Status: Currently in Alpha. We're actively developing and welcome feedback!


Community & Support